If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-+10y+24=0
We add all the numbers together, and all the variables
y^2+10y=0
a = 1; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·1·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*1}=\frac{-20}{2} =-10 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*1}=\frac{0}{2} =0 $
| 5(x+2)=-9x+38 | | -2u-32=-5(u+1) | | 5(v-8)=8v-19 | | 6(x-6)=5(x+10) | | 4x-12=9(x-3) | | 6(x-60=5(x+1) | | 9.2(2x+3)-2=5 | | 14n=14n11n+6 | | -(x+3)+)0.75x+5=0 | | 5/9(f-32)=-6 | | x-3/4x=80 | | 7(3w+2)/4=9 | | 2/3x+x=150 | | 2(3s+2)=70 | | 2(x-1)=4(-2) | | 6.4(n+2)-2n=0 | | 9=3(u-2)+2u | | 14=4(y+6)-6y | | 6(8-5x)=166+2 | | x+(x+3)+(x+36)+(5x)=198 | | 5s+18=163 | | 10h=10=90 | | x+(x-3)+((x-3)*2)=107 | | 3^x-1+3^x+2=56 | | 5x-10=-55-8x | | 5x-3=4x-14 | | -6(9k-9)=-48-6 | | 8b-2b=4 | | f-150=75 | | 8b=2b+6 | | x15=180 | | x19=114 |